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On the number of k-faces of primitive
parallelohedra
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Dehn–Sommerville relations for simple (simplicial) polytopes are applied to

primitive parallelohedra. New restrictions on numbers of k-faces of non-

principal primitive parallelohedra are explicitly formulated for five-, six- and

seven-dimensional parallelohedra.

1. Introduction

Recently Baburin & Engel (2013) gave an interesting table

listing the numbers Nk of k-faces of primitive parallelohedra1

in Ed, 2 � d � 6. For principal primitive parallelohedra these

numbers were found by Voronoı̈ (1908a,b) but for d � 5 there

exist non-principal parallelohedra and, apparently, as numer-

ical results show for d ¼ 5; 6, there are serious restrictions on

the numbers of k-faces (abbreviated below as f-vectors) for

non-principal parallelohedra. The aim of this short note is to

combine known facts about f-vectors of simple polytopes,

namely the Dehn–Sommerville relations (Barvinok, 2002),

together with some general properties of primitive parallelo-

hedra in order to get restrictions on possible values of

f-vectors for non-principal primitive parallelohedra. The

restrictions thus obtained are collected in Table 1. They are

not very sharp and become less interesting with increasing

dimension. Nevertheless, the author hopes that some addi-

tional simple but general relations can be added for primitive

parallelohedra to improve significantly the freedom in the

choice of possible f-vectors. That is why the author finds it

useful to bring this (not well solved) problem to the attention

of the crystallographic community.

The next two sections briefly summarize useful properties of

primitive parallelohedra and of simple polytopes. The last

section presents the results and speculations about possible

generalizations and improvements.

2. Primitive parallelohedra

A parallelohedron P in a facet-to-facet tiling of Ed is named

primitive if in every k-face of P, k ¼ 0; 1; . . . ; d� 1, exactly

d� kþ 1 adjacent parallelohedra meet. In particular, each

vertex, v, of a primitive parallelohedron in Ed is determined by

the intersection of d facets. Let ff l1
; . . . ; f ld

g be the set of the

corresponding facet vectors2 whose corresponding facets meet

in a common vertex v of a lattice L. These vectors are linearly

independent and determine a sublattice of the lattice L of
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1 Parallelohedra are convex bodies which tile space by translations.
Parallelohedra appear naturally in crystallography, for example, as Voronoı̈
cells of lattices.
2 Facet vectors �f i of a Voronoı̈ cell of a lattice L are the shortest vectors in
their L=2L coset.
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index !ðvÞ. It was shown by Voronoı̈ (1908a,b) that the upper

bound for the number of vertices is reached exactly if, for each

vertex v of a primitive parallelohedron, !ðvÞ ¼ 1. Ryshkov &

Baranovskii (1998) gave upper bounds for the index !ðvÞ,
namely, they have proved that for dimensions d ¼ 2; 3; 4; 5; 6

the maximal values of the index !ðvÞ are 1, 1, 1, 2, 3, respec-

tively.

The primitive parallelohedron with !ðvÞ ¼ 1 for each of its

vertices is called principal primitive. Voronoı̈ has shown that

the number of k-faces Nk, 0 � k � d, of a parallelohedron in

Ed satisfies the following inequality:

Nk � ðdþ 1� kÞ
Xd�k

l¼0

ð�1Þd�k�l d� k

l

� �
ð1þ lÞ

d: ð1Þ

For the number of facets (i.e. for k ¼ d� 1), equation (1)

becomes an equality for all primitive parallelohedra:

Nd�1 ¼ 2ð2d
� 1Þ ð2Þ

and coincides with the upper bound in the inequality for

the number of facets given by Minkowski (1907) for a

d-dimensional parallelohedron:

2d � Nd�1 � 2ð2d � 1Þ: ð3Þ

The equality sign in (1) holds for principal primitive paralle-

lohedra for any k.

Another important property of primitive parallelohedra

which is used below is the divisibility property of the k-face

numbers. Namely, the number of k-faces of primitive paral-

lelohedra should be a multiple of 2ðd� kþ 1Þ for k< d� 1

(Engel et al., 2004).

3. Dehn–Sommerville relations for simple polytopes

A d-dimensional polytope P is called simple if every vertex v

of P belongs to exactly d facets of P.

The class of simple polytopes is larger than the class of

primitive parallelohedra defined in terms of primitive tilings.

For example, the d-dimensional cube is a simple but not

primitive parallelohedron. For a simple d-dimensional poly-

tope the system of linear relations between numbers of

k-faces (known as Dehn–Sommerville relations) consists of

bðdþ 1Þ=2c relations, where bxc is the integer part of x. The

simplest way to introduce these relations is to use the so-called

h-vectors of the polytope (Barvinok, 2002).

Definition. h-vector: let P be a d-dimensional simple poly-

tope and NkðPÞ be the number of k-dimensional faces of P [we

agree that NdðPÞ ¼ 1]. Let

hkðPÞ ¼
Xd

i¼k

ð�1Þi�k i

k

� �
NiðPÞ for k ¼ 0; . . . ; d: ð4Þ

The ðdþ 1Þ-tuple ½h0ðPÞ; . . . ; hdðPÞ� is called the h-vector of P.

It can be proved that numbers of k-faces, Nk, can be uniquely

determined from hkðPÞ:

NiðPÞ ¼
Xd

k¼i

k

i

� �
hkðPÞ for i ¼ 0; . . . ; d: ð5Þ

Now we formulate without proof the following important

proposition.

Proposition (Dehn–Sommerville relations). Let P be a

simple d-dimensional polytope. Then

hkðPÞ ¼ hd�kðPÞ for k ¼ 0; . . . ; d ð6Þ

and

1 ¼ h0 � h1 � . . . � hbd=2c: ð7Þ

For centrally symmetric simple d-polytopes Stanley (1996)

improved inequality (7), namely:

hi � hi�1 �
d

i

� �
�

d

i� 1

� �
; for i � bd=2c: ð8Þ

For primitive parallelohedra (which form a subclass of simple

polytopes) we can apply Dehn–Sommerville relations toge-

ther with explicit expression (2) for the number of facets of

primitive parallelohedra and the upper bound for the number

of k-faces of primitive parallelohedra given by Voronoı̈

[equation (1)]. Also we take into account that the number of

k-faces of primitive parallelohedra should be a multiple of

2ðd� kþ 1Þ for k< d� 1.

4. Restrictions on the number of k-faces for primitive
parallelohedra

In this section we apply Dehn–Sommerville relations sepa-

rately to primitive parallelohedra of different dimensions.

4.1. d = 2 primitive parallelohedra

We start with the trivial case of two-dimensional primitive

parallelohedra. For d ¼ 2, the only Dehn–Sommerville rela-

tion coincides with the Euler equation of the polytope.

Together with N1 ¼ 6 which follows from the general bound

(2) this determines the unique f-vector of numbers of faces

ðN1 ¼ 6;N0 ¼ 6Þ for primitive two-dimensional parallelo-

hedra.
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Table 1
Restrictions on possible values of f-vectors for primitive parallelohedra.

For the boundaries of the domain of variation of �; �; � parameters, see the
text.

d 2 3 4 5 6 7

N0 6 24 120 720� 12� 5040þ 12�� 40� 40320þ 48�� 16�
N1 6 36 240 1800� 30� 15120þ 36�� 120� 141120þ 168�� 56�
N2 1 14 150 1560� 24� 16800þ 30�� 120� 191520þ 204�� 72�
N3 1 30 540� 6� 8400� 40� 126000þ 90�� 40�
N4 1 62 1806� 6� 40824� 8�
N5 1 126 5796� 6�
N6 1 254



4.2. d = 3 primitive parallelohedra

For d ¼ 3 the second Dehn–Sommerville relation appears

which can be written in a form applicable for any d � 3,

dN0ðPÞ ¼ 2N1ðPÞ for d � 3: ð9Þ

Applying two Dehn–Sommerville relations to three-dimen-

sional simple polytopes we get the following expression for the

f-vector:

ðN0 ¼ 2N2 � 4; N1 ¼ 3N2 � 6; N2Þ; ð10Þ

which includes one free parameter, N2. For primitive three-

dimensional parallelohedra the number of facets is

N2 ¼ 14 ¼ 2ð23 � 1Þ [this follows from (2)] and we get the

unique possible f-vector for three-dimensional primitive

parallelohedra: ðN0 ¼ 24;N1 ¼ 36;N2 ¼ 14Þ.

4.3. d = 4 primitive parallelohedra

The same two general linear Dehn–Sommerville relations

exist for four-dimensional simple polytopes. This means that

we can express numbers of k-faces for four-dimensional simple

polytopes in terms of two free parameters, say N3 and N2:

ðN0 ¼ N2 � N3; N1 ¼ 2N2 � 2N3; N2; N3Þ: ð11Þ

It follows that for primitive 4-parallelohedra after imposing

N3 ¼ 30 ¼ 2ð24 � 1Þ and N2 ¼ 150� 6�, taking into account

that primitive parallelohedra have only sixfold belts (i.e. Nd�2

should be a multiple of 6), we get for the f-vector and for the

h-vector the following expressions which depend on one free

integer parameter �:

ðN0 ¼ 120� 6�; N1 ¼ 240� 12�; N2 ¼ 150� 6�;

N3 ¼ 30; N4 ¼ 1Þ; ð12Þ

ðh0 ¼ 1 ¼ h4; h1 ¼ 26 ¼ h3; h2 ¼ 66� 6�Þ: ð13Þ

Applying relation (7) we get immediately that � can take only

a small number of values, namely � ¼ 0; 1; 2; 3; 4; 5; 6. But

among these values only � ¼ 0 and � ¼ 5 give the number of

vertices divisible by 10 and among these two possible values

only � ¼ 0 gives the number of edges divisible by 8. Conse-

quently, we get that the only possible f-vector for primitive

four-dimensional parallelohedra is ðN0 ¼ 120, N1 ¼ 240,

N2 ¼ 150;N3 ¼ 30;N4 ¼ 1Þ. Note that there are three

combinatorially different primitive parallelohedra for d ¼ 4.

All three are principal primitive. There exists also one

combinatorial type of d ¼ 4 parallelohedra which has the

maximal number of facets but which is non-primitive.

4.4. d = 5 primitive parallelohedra

For five-dimensional simple polytopes there are three

Dehn–Sommerville linear relations which we give explicitly

below:

N0 � N1 þ N2 � N3 þ N4 � 2 ¼ 0; ð14Þ

N1 � 2N2 þ 3N3 � 5N4 þ 10 ¼ 0; ð15Þ

N2 � 4N3 þ 10N4 � 20 ¼ 0: ð16Þ

For primitive parallelohedra N4 ¼ 62 ¼ 2ð25 � 1Þ and we can

express Nd�2 as N3 ¼ 540� 6�, taking into account again that

primitive parallelohedra have only sixfold belts (i.e. Nd�2

should be a multiple of 6). This allows us to express all

numbers of faces in terms of one free parameter �:

ðN0 ¼ 720� 12�; N1 ¼ 1800� 30�; N2 ¼ 1560� 24�;

N3 ¼ 540� 6�; N4 ¼ 62Þ with � ¼ 0; 1; . . . : ð17Þ

For the components of the h-vector we have

ðh0 ¼ 1 ¼ h5; h1 ¼ 57 ¼ h4; h2 ¼ 302� 6� ¼ h3Þ: ð18Þ

It is easy to see that Nk (for k< d� 1 ¼ 4) are divisible by

2ðd� kþ 1Þ for any integer � ¼ 0; 1; . . .. The f-vectors found

by Baburin & Engel (2013) correspond to � ¼ 0; 1. The

restriction imposed by inequality (7) applicable to any simple

polytopes gives upper boundary � � 40, which is very far

above the observed values.

4.5. d = 6 primitive parallelohedra

For six-dimensional simple polytopes there are again three

linear Dehn–Sommerville relations. Together with N5 ¼

126 ¼ 2ð26 � 1Þ this gives for six-dimensional primitive

parallelohedra the following expression for the f-vector

depending on two free parameters:

ðN5 ¼ 126; N4 ¼ 1806� 6�; N3 ¼ 8400� 8�;

N2 ¼ 16800þ 30�� 24�; N1 ¼ 15120þ 36�� 24�;

N0 ¼ 5040þ 12�� 8�Þ: ð19Þ

We see that for any integer �; � the N4 is divisible by 6, the N3

is divisible by 8, the N1 is divisible by 12. At the same time N2

becomes a multiple of 10 only for � ¼ 5�, with � ¼ 0; 1; 2; . . ..
Replacing � by 5� we get

ðN5 ¼ 126; N4 ¼ 1806� 6�; N3 ¼ 8400� 40�;

N2 ¼ 16800þ 30�� 120�; N1 ¼ 15120þ 36�� 120�;

N0 ¼ 5040þ 12�� 40�Þ: ð20Þ

But we still need to check that N0 is divisible by 14. This is

equivalent to the requirement for ð3�� 10�Þ to be a multiple

of 7. This is possible only for � ¼ 0, � ¼ 0; 7; 14; . . .; � ¼ 1,

� ¼ 1; 8; 15; . . .; � ¼ 2, � ¼ 2; 9; 16; . . . etc. More generally

we should have � � � ¼ 7k.

Taking into account that for any set of two free parameters,

�; �, the numbers of faces cannot exceed their values for

principal primitive parallelohedra, we get general restrictions

on possible values of free parameters 0 � 3� � 10�. Together

with the divisibility constraint � ¼ �þ 7k, with k being any

integer, it follows that for � ¼ 0 the only possible value of the

second parameter is � ¼ 0. Similarly, for � ¼ 1 we should have

� ¼ 1 and for � ¼ 2, � ¼ 2. Only starting from � ¼ 3, several

values of the second parameter are possible; in particular

formal solutions are ð� ¼ 3; � ¼ 3Þ and ð� ¼ 3; � ¼ 10Þ.

Numerical results given by Baburin & Engel (2013) corre-

spond to f-vectors with � ¼ � ¼ 0; 1; . . . ; 16. These results

indicate that for six-dimensional primitive parallelohedra the

214 Boris Zhilinskii � k-faces of primitive parallelohedra Acta Cryst. (2015). A71, 212–215

research papers



whole observed set of f-vectors can be described as only a one-

parameter family. This allows us to suggest that there exists an

additional property of primitive parallelohedra which is not

taken into account in the present analysis.

It is clear that with increasing dimension the number of free

parameters for the f-vectors obtained within the scheme

adopted above increases. For seven-dimensional parallelo-

hedra we still have two free parameters but for eight-

dimensional parallelohedra there are three such parameters

etc. The question whether the exact solution for f-vectors of

primitive parallelohedra in any dimension can be described by

a one-parameter family or a multi-parameter family is an

interesting open problem.

4.6. d = 7 primitive parallelohedra

To go a little bit beyond results for the f-vectors of primitive

parallelohedra communicated in Baburin & Engel (2013) we

give here a short comment about solutions for d ¼ 7 which are

listed in Table 1 together with solutions for d ¼ 2; 3; 4; 5; 6.

For d ¼ 7 there are four Dehn–Sommerville linear relations

which can be explicitly rewritten from (6) as

N0 � N1 þ N2 � N3 þ N4 � N5 þ N6 � 2 ¼ 0; ð21Þ

N1 � 2N2 þ 3N3 � 4N4 þ 5N5 � 7N6 þ 14 ¼ 0; ð22Þ

N2 � 3N3 þ 6N4 � 11N5 þ 21N6 � 42 ¼ 0; ð23Þ

N3 � 5N4 þ 15N5 � 35N6 þ 70 ¼ 0: ð24Þ

Replacing N6 ¼ 254 ¼ 2ð27 � 1Þ, N5 ¼ 5796� 6� and N4 ¼

40824 � 8� we get the following set of components of

f-vectors depending on two free parameters:

ðN0 ¼ 40320 þ 48�� 16�; N1 ¼ 141120þ 168�� 56�;

N2 ¼ 191520þ 204�� 72�; N3 ¼ 126000 þ 90�� 40�;

N4 ¼ 40824� 8�; N5 ¼ 5796� 6�; N6 ¼ 254Þ: ð25Þ

Now for any integer � and � the Nk, k< d� 1, numbers are

always divisible by 2ðd� kþ 1Þ. Taking into account that Nk

numbers for any choice of � and � parameters cannot be

larger than the limiting values for principal primitive paral-

lelohedra, we get the following restriction of parameters:

� � 3� � 0. Whether an additional linear inequality between

possible values of � and � parameters exists for primitive

parallelohedra in a way similar to the situation observed for

six-dimensional parallelohedra is a very interesting question.

To find sharper lower boundaries for the numbers of faces of

primitive parallelohedra (or equivalently the upper boundary

on free parameters �; �; �; . . .) is another challenge.
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